会議録・紀要(すみませんまだ真面目に更新しきれていません)
- A Derivation of Conserved Quantities and Symmetries for the
Multi--Dimensional Soliton Equations
- K. Kajiwara and J. Satsuma
- in Nonlinear Evolution Equations and Dynamical Systems,
Proceedings of NEEDS '90 eds. by V.G.Makhankov and O.K.Pashaev
(Springer--Verlag, Berlin, 1991), 79--82.
- Trilinear Form -- An Extension of Hirota's Bilinear Form
- J. Satsuma, J. Matsukidaira and K. Kajiwara
- in Solitons and Chaos eds. by I. Antoniou and F.J.
Lambert (Springer--Verlag, Berlin, 1992), 264--269.
- The Relativistic Toda Lattice and Its Trilinear Form J.
Hietarinta, K. Kajiwara, J. Matsukidaira and J. Satsuma in {\it
Nonlinear Evolution Equations and Dynamical Systems, Proceedings of
NEEDS '91} eds. by M. Boiti, L. Marina and F. Pempinelli (World
Scientific, Singapore, 1992), 30--43.
- 三次形式で書かれる非線形波動方程式の解
- 梶原 健司,松木平 淳太,薩摩 順吉
- 京都大学数理解析研究所講究録{\bf 782}「流体中の非線形波動の数理的側面」 (1992), 183--194.
- 離散系および$q$--離散系における可積分系
- 梶原 健司, 薩摩 順吉
- 「量子群とその周辺」報告集(1992), 95--105.
- ソリトン方程式の$q$-離散化
- 梶原 健司, 薩摩 順吉
- 京都大学数理解析研究所講究録{\bf 822}「非線形可積分系の研究の現状と展 望」(1993), 163--175.
- 離散型パンルベ方程式とその解
- 梶原 健司, 薩摩 順吉, 太田 泰広
- 京都大学数理解析研究所講究録{\bf 868}「非線形可積分系の研究の現状と展 望」(1994), 19--30.
- 離散型パンルベ方程式とその周辺
- 梶原 健司,太田 泰広,薩摩 順吉
- 京都大学数理解析研究所講究録{\bf 889}「非線形可積分系による応用解析」 (1994), 124--137.
- Exact Solutions for the Discrete Painlev\'e Equations
- Kenji Kajiwara, Yasuhiro Ohta and Junkichi Satsuma
- in Nonlinear Evolution Equations and Dynamical Systems,
Proceedings of NEEDS '94 eds. by V.G. Makhankov, A.R. Bishop and
- D.D. Holm(World Scientific, Singapore, 1995), 76--85.
- 離散型非線形可積分系とその応用
- 梶原 健司
- 京都大学数理解析研究所講究録{\bf 933}「非線形可積分系の応用数理」 (1995), 1--15.
- Bilinear Structure and Exact Solutions for the Discrete
Painlev\'e I Equation
- Yasuhiro Ohta, Kenji Kajiwara and Junkichi Satsuma
- in Proceedings of the Workshop on Symmetries and
Integrability of Difference Equations, (CRM Proceedings and Lecture
Notes Series, AMS, 1996), 265--268.
- Rational Solutions to d-P$_{\rm IV}$
- Jarmo Hietarinta and Kenji Kajiwara
- preprint, solv-int/9705002, to appear in Proceedings of
the Second Workshop on Symmetries and Integrability of Difference
Equations (Cambridge).